Реагенты для измерения активности холинэстеразы Использовать только для работы «in vitro» в клинической лаборатории

ХОЛИНЭСТЕРАЗА (СНЕ)

Бутирилхолин

ПРИНЦИП МЕТОДА

Холинэстераза (СНЕ) катализирует гидролиз бутирилхолин до тиохолина и бутириловой кислоты. Каталитическая концентрация определяется по скорости уменьшения гексацианоферрата (III), оптическая плотность которого измеряется при 405 нм, путем протекания следующих реакций 1,2,3.

2 Тиохолин + 2 ОН- + 2 Гексацианоферрат (III) — Дитиобис(холин) + 2 Гексацианоферрат (II) + H₂O

НАБОРЫ

	КОД 11588	КОД 11589
А. Реагент	1 x 40 мл	4 x 40 мл
В. Реагент	1 x 10 мл	4 x 10 мл

COCTAB

- А. Реагент. Пирофосфат 95 mmol/L, Гексацианоферрат (III) 2.5 mmol/L, pH 7.6.
- В. Реагент В. Бутирилтиохолин 60 mmol/L.

ХРАНЕНИЕ

Хранить при 2-8°С

Реагенты и стандарт стабильны до окончания срока годности, указанного на этикетке, при хранении в плотно закрытом сосуде и предотвращении загрязнения во время использования

Признаки загрязнения:

- Реагенты: присутствие взвешенных частиц, мутность, абсорбция бланка выше 1.300 при 405 нм (1 см кювета).

ПРИГОТОВЛЕНИЕ РЕАГЕНТА

Рабочий реактив: в сосуд с реактивом А добавить весь реактив В. Осторожно перемешать. Для приготовления других объемов смешивать в следующей пропорции: 4 мл реактива A+1 мл реактива B. Раствор стабилен в течение 3 дней при $2-8^{\circ}$ C.

НЕОБХОДИМОЕ ОБОРУДОВАНИЕ

- Анализатор, спектрофотометр или фотометр с термостатируемой ячейкой при 37°С и возможностью считывания при 405 нм.
- Кювета с длиной оптического пути 1 см.

ОБРАЗЦЫ

Сыворотка или плазма, полученные с помощью стандартных процедур. Гепарин и ЭДТА рекомендуются в качестве антикоагулянтов

Холинэстераза в сыворотке или плазме стабильна в течение 14 дней при 2-8°C.

ПРОЦЕЛУРА

- 1. Довести Рабочий Реагент и фотометр до температуры реакции.
- 2. Внести в кювету (примечание 1):

Рабочий Реагент (примечание 3)	1.5 мл
Образец	25 мкл

- 3. Перемешать и поместить кювету в измерительную ячейку фотометра. Начать отсчет
- 4. Через 90 секунд, записать начальную абсорбцию и измерить абсорбцию с 30 секундным интервалом в течение 90 секунд.
- 5. Рассчитать разницу последовательных измерений абсорбций, рассчитать среднюю разницу абсорбций за минуту (Δ А / мин).

PACYET

Концентрация холинэстеразы в образце вычисляется по следующей формуле:

$$\Delta$$
 А/мин х $\frac{Vtx10^6}{\text{ExlxVs}}$ = Ед/л

Коэффициент молярной абсорбции (є) красителя при 405 нм составляет 927, оптический путь (I) составляет 1 см, общий реакционный объем (Vt) равен 1.525, объем образца (Vs) равен 0.025, и 1 Ед/л равен 0.0166 мккат/л. Для расчета каталитической концентрации используйте следующие формулы:

Δ А/мин	х 65804 = Ед/л
	х 1097 = мкКат/л

НОРМАЛЬНЫЕ ЗНАЧЕНИЯ

Холинэстераза (37°C):

M11588r-02

Мужчины	4620-11500 U/L = 76.9-191 µkat/L
Женщины	3930-10800 U/L = 65.5-180 µkat/L

Данные величины ориентировочны, каждая лаборатория должна устанавливать свои диапазоны нормальных значений.

КОНТРОЛЬ КАЧЕСТВА

Рекомендуется использовать контрольную сыворотку для биохимических тестов уровня I (код 18042) и II (код 18043) для определения функциональности процесса измерения

Каждая лаборатория должна выработать собственную схему внутреннего контроля качества и процедуры для коррекции действий в случае, если контроль качества не укладывается в приемлемые диапазоны.

МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Предел обнаружения: 123 Ед/л = 2.05 мккат/л.
- Предел линейности: 25000 Ед/л = 417 мккат/л. Для более высоких значений следует развести образец дистиллированной водой 1/2 и повторить измерение.
- Сходимость (внутри серии):

Средняя концентрация	CV	n
5416 Ед/л = 90.27 мккат/л 11279 Ед/л = 188.0 мккат/л	1.0 % 0.7 %	20 20
112/9 ЕД/Л = 100.0 МККАТ/Л	0.7 %	20

—Воспроизводимость (между сериями):

Средняя концентрация	CV	n
5416 Ед/л = 90.27 мккат/л	1.0 %	25
11279 Ед/л = 188.0 мккат/л	0.6 %	25

- Достоверность: Результаты, полученные с данными реагентами не показывали значительных отличий при сравнении с результатами, полученными с другими реагентами. Детали сравнительных экспериментов доступны по требованию.
- Интерференция: Липемия (триглицериды < 10 г/л) и билирубин (< 20 мг/дл) не влияют на результаты. Гемолиз может влиять на результаты. Некоторые вещества и лекарства могут интерферировать⁵.

Данные метрологические характеристики были получены при использовании анализатора, при использовании другого оборудования или ручных методов результаты могут варьироваться

ДИАГНОСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Сывороточную холинэстеразу также называют псевдохолинэстеразой, чтобы отличить ее от холинэстеразы, присутствующей в эритроцитах и нервных окончаниях. Холинэстераза синтезируется в печени и может служит показателем ее работы. Уменьшение ее активности является следствием замедленного синтеза.

Данное определение играет большую роль в диагностике пациентов с атипичной формой фермента и в случаях отравления фосфорорганическими инсектицидами. Пациенты с атипичной формой фермента имеют повышенную чувствительность к суксаметонию, лекарственному веществу, используемому в хирургии в качестве мышечного релаксанта. Его определение очень важно для профилактики длительного апноэ из-за введения данного лекарственного препарата^{4,6}

Изменение в концентрации сывороточной ХЭ может также встречаться при других состояниях. Она уменьшается при острых инфекциях, эмболии легких, мышечной дистрофии и инфаркте миокарда^{4,6}.

Клинический диагноз не должен основываться на результатах отдельного теста, он должен согласовываться с результатами клинических и лабораторных данных.

ПРИМЕЧАНИЕ

1. Данные реагенты могут быть использованы в различных автоматических анализаторах. Инструкции доступны по требованию

БИБЛИОГРАФИЯ

- 1. DGKC. Proposal of standard methods for the determination of enzyme catalytic concentrations in serum and plasma at 37°C. Il Cholinesterase. Eur J Clin Chem Chim Biochem 1992; 30: 163-170.
- 2. Panteghini M and Bonora R. Evaluation of a new continuous colorimetric method for determination of serum pseudo-cholinesterase catalytic activity and its application to a centrifugal fast analyser. J Clin Chem Clin Biochem 1984; 22: 671-676.
- 3. Whittaker M, Britten JJ and Dawson PJ. Comparison of a commercially available assay system with two reference methods for the determination of plasma cholinesterase variants. Clin Chem 1983; 29: 1746-1751.
- 4. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics, 4th ed. Burtis CA, Ashwood ER, Bruns DE. WB Saunders Co, 2005.
- 5. Young DS. Effects of drugs on clinical laboratory tests, 5th ed. AACC Press, 2000.
- 6. Friedman and Young. Effects of disease on clinical laboratory tests, 4th ed. AACC Press, 2001